State Trajectory Compression for Optimal Control with Parabolic PDEs
نویسندگان
چکیده
In optimal control problems with nonlinear time-dependent 3D PDEs, full 4D discretizations are usually prohibitive due to the storage requirement. For this reason gradient and Newton type methods working on the reduced functional are often employed. The computation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. The state enters into the adjoint equation, again requiring the storage of a full 4D data set. We propose a lossy compression algorithm using an inexact but cheap predictor for the state data, with additional entropy coding of prediction errors. As the data is used inside a discretized, iterative algorithm, lossy compression maintaining a certain error bound turns out to be sufficient. AMS MSC 2010: 49M29, 65K10, 65M60, 94A29
منابع مشابه
Lossy compression for PDE-constrained optimization: adaptive error control
For the solution of optimal control problems governed by nonlinear parabolic PDEs, methods working on the reduced objective functional are often employed to avoid a full spatio-temporal discretization of the problem. The evaluation of the reduced gradient requires one solve of the state equation forward in time, and one backward solve of the adjoint equation. The state enters into the adjoint e...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملSolving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox
This paper presents concepts and implementation of the finite element toolbox Kaskade 7, a flexible C++ code for solving elliptic and parabolic PDE systems. Issues such as problem formulation, assembly and adaptivity are discussed at the example of optimal control problems. Trajectory compression for parabolic optimization problems is considered as a case study. AMS MSC 2010: 65N30, 65M60, 65K1...
متن کاملNumerical Optimal Control of Parabolic Pdes Using Dasopt
This paper gives a preliminary description of DASOPT, a software system for the optimal control of processes described by time-dependent partial differential equations (PDEs). DASOPT combines the use of efficient numerical methods for solving differential-algebraic equations (DAEs) with a package for large-scale optimization based on sequential quadratic programming (SQP). DASOPT is intended fo...
متن کاملOptimal Boundary Control & Estimation of Diffusion-Reaction PDEs
This paper considers the optimal control and optimal estimation problems for a class of linear parabolic diffusion-reaction partial differential equations (PDEs) with actuators and sensors at the boundaries. Diffusion-reaction PDEs with boundary actuation and sensing arise in a multitude of relevant physical systems (e.g. magneto-hydrodynamic flows, chemical reactors, and electrochemical conver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 34 شماره
صفحات -
تاریخ انتشار 2012